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We show that every planar graph G has a 2-fold 9-coloring. 
In particular, this implies that G has fractional chromatic 
number at most 9

2 . This is the first proof (independent of the 
4 Color Theorem) that there exists a constant k < 5 such that 
every planar G has fractional chromatic number at most k.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

All graphs in this paper are finite, loopless, and simple (parallel edges are forbidden). 
To fractionally color a graph G, we assign to each independent set in G a nonnegative 
weight, such that for each vertex v the sum of the weights on the independent sets 
containing v is 1. A graph G is fractionally k-colorable if G has such an assignment 
of weights where the sum of the weights is at most k. The minimum k such that G is 
fractionally k-colorable is its fractional chromatic number, denoted χf (G). (If we restrict 
the weight on each independent set to be either 0 or 1, then we return to the standard 
definition of chromatic number.) In 1997, Scheinerman and Ullman [13, p. 75] succinctly 
described the state of the art for fractionally coloring planar graphs. Not much has 
changed since then.
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The fractional analogue of the four-color theorem is the assertion that the maximum 
value of χf (G) over all planar graphs G is 4. That this maximum is no more than 4 
follows from the four-color theorem itself, while the example of K4 shows that it is no 
less than 4. Given that the proof of the four-color theorem is so difficult, one might 
ask whether it is possible to prove an interesting upper bound for this maximum 
without appeal to the four-color theorem. Certainly χf (G) ≤ 5 for any planar G, 
because χ(G) ≤ 5, a result whose proof is elementary. But what about a simple 
proof of, say, χf (G) ≤ 9

2 for all planar G? The only result in this direction is in a 
1973 paper of Hilton, Rado, and Scott [7] that predates the proof of the four-color 
theorem; they prove χf (G) < 5 for any planar graph G, although they are not able 
to find any constant c < 5 with χf (G) < c for all planar graphs G. This may be the 
first appearance in print of the invariant χf .

In Section 2, we give exactly what Scheinerman and Ullman asked for—a simple proof 
that χf (G) ≤ 9

2 for every planar graph G. In fact, this result is an immediate corollary 
of a stronger statement in our main theorem. Before we can express it precisely, we need 
another definition. A k-fold �-coloring of a graph G assigns to each vertex a set of k
colors, such that adjacent vertices receive disjoint sets, and the union of all sets has size 
at most �. If G has a k-fold �-coloring, then χf (G) ≤ �

k . To see this, consider the �
independent sets induced by the color classes; assign to each of these sets the weight 1

k . 
Now we can state the theorem.

Main Theorem. Every planar graph G has a 2-fold 9-coloring. In particular, χf (G) ≤ 9
2 .

In an intuitive sense, the Main Theorem sits somewhere between the 4 Color Theorem 
and the 5 Color Theorem. It is certainly implied by the former, but it does not immedi-
ately imply the latter. The Kneser graph Kn:k has as its vertices the k-element subsets 
of {1, . . . , n} and two vertices are adjacent if their corresponding sets are disjoint. Saying 
that a graph G has a 2-fold 9-coloring is equivalent to saying that it has a homomorphism 
to the Kneser graph K9:2. To claim that a coloring result for planar graphs is between 
the 4 and 5 Color Theorems, we would like to show that every planar graph G has a 
homomorphism to a graph H, such that H has clique number 4 and chromatic number 5. 
(Since K4 can map into H, we know that H has clique number at least 4. And clique 
number less than 5 means our result is something more than just the 5 Color Theorem. 
The fact that H has chromatic number 5 means that our result implies the 5 Color The-
orem.) Unfortunately, K9:2 is not such a graph. It is easy to see that ω(Kn:k) = �n/k�; 
so ω(K9:2) = 4, as desired. However, Lovász [9] showed that χ(Kn:k) = n − 2k + 2; thus 
χ(K9:2) = 9 − 2(2) + 2 = 7. Fortunately, we can easily overcome this problem.

The categorical product (or universal product) of graphs G1 and G2, denoted G1 ×G2
is defined as follows. Let V (G1 ×G2) = {(u, v)|u ∈ V (G1) and v ∈ V (G2)}; now (u1, v1)
is adjacent to (u2, v2) if u1u2 ∈ E(G1) and v1v2 ∈ E(G2). Let H = K5 × K9:2. It is 
well-known [6] that if a graph G has a homomorphism to each of graphs G1 and G2, 
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then G also has a homomorphism to G1 ×G2 (the image of each vertex in the product 
is just the products of its images in G1 and G2). The 5 Color Theorem says that every 
planar graph has a homomorphism to K5; so if we prove that every planar graph G has 
a homomorphism to K9:2, then we also get that G has a homomorphism to K5 ×K9:2.

It is easy to check that for any G1 and G2, we have ω(G1 ×G2) = min(ω(G1), ω(G2))
and χ(G1 × G2) ≤ min(χ(G1), χ(G2)). To prove this inequality, we simply color each 
vertex (u, v) of the product with the color of u in an optimal coloring of G1, or the color 
of v in an optimal coloring of G2. (It is an open problem whether this inequality always 
holds with equality [12].) When H = K5 ×K9:2 we get ω(H) = 4 and χ(H) = 5. Earlier 
work of Naserasr [10] and Nešetřil and Ossona de Mendez [11] also constructed graphs H, 
with ω(H) = 4 and χ(H) = 5, such that every planar graph G has a homomorphism 
to H; however, their examples had more vertices than ours. Naserasr gave a graph 
with size 63

(62
4
)

= 35, 144, 235 and the construction in [11] was still larger. In contrast, 
|K5 ×K9:2| = 5

(9
2
)

= 180.
Wagner [14] characterized K5-minor-free graphs. The Wagner graph is formed from an 

8-cycle by adding an edge joining each pair of vertices that are distance 4 along the cycle. 
Wagner showed that every maximal K5-minor-free graph can be formed recursively from 
planar graphs and copies of the Wagner graph by pasting along copies of K2 and K3 (see 
also [5, p. 175]). Since the Wagner graph is 3-colorable, it clearly has a 2-fold 9-coloring. 
To show that every K5-minor-free graph is 2-fold 9-colorable, we color each smaller 
planar graph and copy of the Wagner graph, then permute colors so that the colorings 
agree on the vertices that are pasted together.

Hajós conjectured that every graph is (k−1)-colorable unless it contains a subdivision 
of Kk. This is known to be true for k ≤ 4 and false for k ≥ 7. The cases k = 5 and 
k = 6 remain unresolved. Since this problem seems difficult, we offer the following weaker 
conjecture.

Conjecture. Every graph with no K5-subdivision is 2-fold 9-colorable.

An immediate consequence of the 4 Color Theorem is that every n-vertex planar 
graph has an independent set of size at least n

4 , and this is best possible, as shown 
by the disjoint union of many copies of K4. In 1968, Erdös [2] suggested that perhaps 
this corollary could be proved more easily than the full 4 Color Theorem. And in 1976, 
Albertson [1] showed, independently of the 4 Color Theorem, that every n-vertex planar 
graph has an independent set of size at least 2n

9 . (Recently [4], we strengthened this 
lower bound to 3n

13 .)
Albertson’s proof inspired and heavily influenced our proof of the Main Theorem. 

The bulk of the work in our proof consists in showing that certain configurations are 
reducible, i.e., they cannot appear in a minimal counterexample to the theorem. The 
proof concludes via a discharging argument, where we show that every planar graph 
contains one of the forbidden configurations; hence, it is not a minimal counterexample.
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Before the proof, we need a few definitions. A k-vertex is a vertex of degree k; similarly, 
a k−-vertex (resp. k+-vertex) has degree at most (resp. at least) k. A k-neighbor of a 
vertex v is a k-vertex that is a neighbor of v; and k−-neighbors and k+-neighbors are 
defined analogously. A k-cycle is a cycle of length k. A vertex set V1 in a connected graph 
G is separating if G \ V1 has at least two components. A cycle C is separating if V (C) is 
separating. Finally, an independent k-set is an independent set (or stable set) of size k.

2. Fractional coloring of planar graphs

Now we prove our Main Theorem, that every planar graph has a 2-fold 9-coloring. 
Our proof uses the methods of reducibility and discharging. First, we prove that certain 
properties must hold for every minimal counterexample to the theorem (by “minimal” we 
mean having the fewest vertices and, subject to that, the fewest non-triangular faces). 
To conclude, we give a counting argument, via the discharging method, showing that 
every planar graph violates one of these properties. Thus, no minimal counterexample 
exists, so the theorem is true.

Hereafter, we write G to denote a minimal counterexample to the theorem. To remind 
the reader of this assumption, we will often refer to a minimal G. Whenever we say 
“a coloring”, we mean a 2-fold 9-coloring. Note that G is a plane triangulation; otherwise, 
adding an edge contradicts our choice of G as having the fewest non-triangular faces.

Lemma 1. A minimal G has no separating clique. Specifically, G has no separating 
3-cycle.

Proof. Suppose G has a separating clique X and let C1, . . . , Ck be the components of 
G \X. By minimality of |G|, we have colorings of G[V (Ci) ∪X] for each i ∈ {1, . . . , k}. 
Permute the colors on each subgraph G[V (Ci) ∪ X] so the colorings agree on X. Now 
identifying the copies of X in each G[V (Ci) ∪X] gives a coloring of G, a contradiction. �

Although it was easy to prove, Lemma 1 will play a crucial role in our proof. We will 
often want to identify two neighbors u1 and u2 of a vertex v and color the smaller graph 
by minimality. To do so, we must ensure that u1 and u2 are indeed non-adjacent; these 
arguments typically use the fact that if u1 and u2 were adjacent, then u1u2v would be a 
separating 3-cycle.

Lemma 2. A minimal G has minimum degree 5.

Proof. Since G is a plane triangulation (and not C3), it has minimum degree at least 3
and at most 5. If G contains a 3-vertex, then its neighbors induce a separating 3-cycle, 
contradicting Lemma 1. If G contains a 4-vertex v, then some pair of its neighbors are 
non-adjacent, since K5 is non-planar. Form G′ from G by deleting v and identifying a 
non-adjacent pair of its neighbors. Color G′ by minimality, then lift the coloring back 
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to G; only v is uncolored. Since two neighbors of v have the same colors, we can extend 
the coloring to G. �

The following fact will often allow us to extend a 2-fold 9-coloring to the uncolored 
vertices of an induced K1,3. It will be useful in verifying that numerous configurations 
are forbidden from a minimal G. We will also often apply it when the uncolored subgraph 
is simply P3.

Fact 1. Let H = K1,3. If each leaf has a list of size 3 and the center vertex has a list 
of size 5, then we can choose 2 colors for each vertex from its lists such that adjacent 
vertices get disjoint sets of colors.

Proof. Let v denote the center vertex and u1, u2, u3 the leaves. Since 2|L(v)| > |L(u1)| +
|L(u2)| + |L(u3)|, some color c ∈ L(v) appears in L(ui) for at most one ui. If such a ui

exists, then by symmetry, say it is u1; now color v with c and some color not in L(u1). 
Otherwise color v with c and an arbitrary color. Now color each ui arbitrarily from its 
at least 2 available colors. �

We use the same approach to prove each of Lemmas 3, 4, and 5. Our idea is to delete 
some vertices of G and identify others, to get a smaller planar graph G′, which we color 
by minimality. In particular, when forming G′ we identify some pairs of non-adjacent 
vertices of G that each have a common neighbor. When we lift the coloring of G′ to G
this means that some of the uncolored vertices will have neighbors with both colors the 
same, reducing the number of colors used on the neighborhood of each such uncolored 
vertex.

One early example of this technique is Kainen’s proof [8] of the 5 Color Theorem. If 
G is a planar graph, then by Euler’s Theorem, G has a 5−-vertex v. If d(v) ≤ 4, then 
we 5-color G − v by minimality; now, since d(v) ≤ 4, we can extend the 5-coloring to v. 
Suppose instead that d(v) = 5. Since K6 is non-planar, v has two neighbors u1 and u2
that are non-adjacent; form G′ by deleting v and identifying u1 and u2, and again 5-color 
G′ by minimality. To extend the 5-coloring to v, we note that even though d(v) = 5, at 
most four colors appear on the neighbors of v (since u1 and u2 have the same color). 
This completes the proof.

Because a minimal G has no separating 3-cycles, if vertices u1 and u2 have a common 
neighbor v and do not appear sequentially on the cycle induced by the neighborhood 
of v, then u1 and u2 are non-adjacent. The numeric labels in the figures denote pairs 
(or more) of vertices that are identified in G′ when we delete any vertices labeled v, 
u1, u2 or u3; vertices with the same numeric label get identified. Typically, it suffices 
to verify that the vertices receiving a common numeric label are pairwise non-adjacent. 
One potential complication is if two vertices that are drawn as distinct are in fact the 
same vertex. This usually cannot happen if the vertices have a common neighbor v, since 
then the degree of v would be too small. Similarly, it usually cannot happen if they are 
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Fig. 1. The problem with Kempe chains for 2-fold coloring.

joined by a path of length three, since then we would get a separating 3-cycle. While 
this always gives a 3-cycle, it may be a facial 3-cycle and not a separating one. We say 
more about this possibility later.

For 4-coloring, Birkhoff [3] showed how to exclude separating 4-cycles and 5-cycles. 
Excluding separating 4-cycles would simplify our arguments below since we would not 
need to worry about vertices at distance at most four being the same. The proof excluding 
4-cycles for 4-coloring is quite easy, but it does not work in our context because standard 
Kempe chain arguments break down for 2-fold coloring. The problem is illustrated in 
Fig. 1. Fig. 1(A) shows the situation for 1-fold coloring; here the 13-path blocks the 
24-path. Fig. 1(B) shows the situation for 2-fold coloring; here the 24-path can get 
through because on the 13-path a vertex has color 2 as well as color 3.

Lemma 3. A minimal G has no 5-vertex with a 5-neighbor and a non-adjacent 
6−-neighbor.

Proof. We first consider the case where a 5-vertex v has non-adjacent 5-neighbors u1

and u2, as shown in Fig. 2(A). Recall that to form G′, we delete v and all ui and for 
each pair (or more) of vertices with the same label, we identify them. We typically know 
that G′ is planar since it inherits an embedding from G. We must also verify that G′ is 
loopless. For this we require that any two vertices with the same label are non-adjacent 
in G, and that any two vertices with distinct labels are distinct. This verification is 
generally routine, but tedious. So we include the details for the present lemma and mainly 
omit them hereafter. By assumption v, u1, and u2 are 5-vertices. Since v is drawn with 
precisely 5 neighbors, these neighbors must be distinct; similarly for neighbors of u1 and 
of u2. The vertices labeled 1 and 2 drawn at distance 3 must be distinct, since otherwise 
G has a separating 3-cycle, contradicting Lemma 1. For the same reason, the vertices 
labeled 1 must be non-adjacent, and also the vertices labeled 2 must be non-adjacent. 
Thus, G′ is a loopless planar graph with fewer vertices than G. (Throughout the paper 
we suppress any parallel edges that appear while forming G′.)
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Fig. 2. The cases of Lemma 3.

We color G′ by minimality, then lift the coloring to G. Now in G each ui has a list of 
at least 3 colors and v has a list of at least 5 colors. So, by Fact 1, we can extend the 
coloring to G.

Now we consider the case where a 5-vertex v has a 5-neighbor, u1, and a 6-neighbor, 
u2, that are non-adjacent, as shown in Fig. 2(B). As in the previous case, all neighbors 
of v must be distinct, and similarly for neighbors of u1 and of u2. Each pair of vertices 
with a common label have a common neighbor for which they do not appear successively 
in its neighborhood. Thus, they cannot be adjacent, since this would create a separating 
3-cycle. So every two vertices with the same label are non-adjacent. The left vertex 
labeled 1 must be distinct from the bottom vertices labeled 2 and 3, since otherwise G
has a separating 3-cycle. The same is true for the bottom vertex labeled 1 and the top 
vertex labeled 3. The top vertices labeled 1 and 3 must be distinct, since otherwise the 
top vertex labeled 2 has degree 4, contradicting Lemma 2. Similarly, the bottom vertices 
labeled 1 and 3 must also be distinct. Thus, G′ is a loopless planar graph with fewer 
vertices than G.

When we lift the coloring of G′ to G, v has a list of size 5 and each of its uncolored 
neighbors has a list of size 3. Hence, by Fact 1, we can extend the coloring of G′ to G. �
Lemma 4. A minimal G has no 6-vertex with non-adjacent 6−-neighbors.

Proof. Let v be a 6-vertex with two non-adjacent 6−-neighbors, u1 and u2. We have 
three possibilities for the degrees of these 6−-neighbors: two 5-vertices, a 5-vertex and a 
6-vertex, and two 6-vertices. For each choice of degrees for the uis, we have two possibil-
ities for their relative location; they could be “across” from each other (at distance three 
along the cycle induced by the neighbors of v) or “offset” from each other (at distance 
two along the same cycle). This yields a total of six possibilities; the three across pos-
sibilities are shown in Fig. 3 and the three offset possibilities are shown in Fig. 4 (with 
two subcases for the third possibility).

In Figs. 3(A, B), all of the vertices with numeric labels (those that will be identified 
in G′) must be distinct, and each pair with the same label must be non-adjacent. The 
details are similar to the proof of Lemma 3. The only complication is in Fig. 3(C): 
a vertex labeled 1 might be the same as a vertex labeled 4 that is drawn at distance 
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Fig. 3. The “across” cases of Lemma 4.

Fig. 4. The “offset” cases of Lemma 4.
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four; call this vertex x. By symmetry, assume that x is formed by identifying the top 
vertex labeled 1 and the bottom vertex labeled 4. This is only a problem if also a vertex 
labeled 1 is adjacent to one labeled 4; so suppose this happens. Note that the top vertex 
labeled 4 cannot be adjacent to the bottom vertex labeled 1; they are on opposite sides 
of the cycle xu1vu2. So, again by symmetry, we assume that x is adjacent to the bottom 
vertex labeled 1. However, now we have a separating 3-cycle (consisting of x, its neighbor 
labeled 1, and their common neighbor u1); this contradicts Lemma 1. This contradiction 
finishes the across cases.

Now we consider the three offset cases, shown in Fig. 4. As with the across cases, in 
Figs. 4(A, B) all vertices with numeric labels must be distinct, and vertices with the 
same label must be non-adjacent. (The details are similar to the proof of Lemma 3.) The 
only complication in is the third case, shown in Figs. 4(C, D): the vertices labeled 1 and 
3 that are drawn at distance four in Fig. 4(C) might be the same; if so, then call this 
vertex x. In this case we switch to the identifications shown in Fig. 4(D); the two vertices 
drawn as bold are, in fact, the same vertex. Note that the two vertices labeled 1 that are 
drawn at distance three are non-adjacent, since they are separated by cycle u1vu2x. So 
we can verify that G′ is loopless and planar, as in the proof of Lemma 3. This finishes 
the offset cases. �
Lemma 5. A minimal G has no 7-vertex with a 5-neighbor and two other 6−-neighbors 
such that all three are pairwise non-adjacent.

Proof. Fig. 5(A) shows a 7-vertex with three pairwise non-adjacent 5-neighbors. We 
verify that G′ is loopless as in the proof of Lemma 3.

For Fig. 5(B), checking that G′ is loopless is mostly straightforward, as in the proof 
of Lemma 3. The only possible problem is if one pair of vertices labeled 1 and 3 are 
actually the same vertex, while another pair labeled 1 and 3 are adjacent; these pairs 
must be disjoint, since otherwise we have a separating 3-cycle. (Note that the bottom 
vertices labeled 1 and 3 are distinct, since otherwise they have a common 3-neighbor. 
And they are also non-adjacent, since otherwise they either have a 4-neighbor or lie on 
a separating 3-cycle.) Hence, we need only consider the case where the vertices labeled 1
and 3 drawn at distance three are adjacent, and the other pair labeled 1 and 3 are the 
same vertex x. However, this is impossible, since then the adjacent pair are on opposite 
sides of the cycle u1vu3x.

For Fig. 5(C), we verify that G′ is loopless as in the proof of Lemma 3.
For Fig. 5(D), verifying that G′ is loopless is mostly straightforward, as in the proof 

of Lemma 3. The only complication is that some vertex labeled 4 could be the same as 
one labeled 1 or 2. If a pair of vertices labeled 2 and 4 are the same, then it must be the 
pair that are drawn at distance 4; call this vertex x. In this case, we unlabel the vertices 
labeled 4 and label w3 with 3. Now, thanks to x, it is easy to check that G′ is loopless. 
So we may assume that vertices labeled 4 are not the same as those labeled 2.
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Fig. 5. The cases of Lemma 5.

Suppose instead that a vertex labeled 4 is the same as one labeled 1; call this vertex y. 
This is only a problem if also some pair of vertices labeled 1 and 4 are adjacent. But this 
is impossible as follows. Since the pair of vertices labeled 1 have a common neighbor, 
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they cannot be adjacent; similarly for the pair labeled 4. So the pairs that are identified 
and adjacent must be disjoint. Further, the identified pair must contain the left vertex 
labeled 1. If it is identified with the bottom vertex labeled 4, then the remaining vertices 
cannot be adjacent, since they are on opposite sides of the 4-cycle u1vu3y. If it is identified 
with the top vertex labeled 4, then the remaining pair cannot be adjacent since they have 
a common neighbor, and G would have a 3-vertex or a separating 3-cycle.

Now consider the final case, shown in Figs. 5(E, F). By horizontal symmetry and 
planarity, we assume the vertices labeled 2 that are drawn at distance 3 are neither the 
same nor adjacent, by reflecting across edge u2v if necessary. (So the vertices labeled 1 
and 2 drawn at distance 4 are distinct.) Hence, in forming G′ we can identify all vertices 
labeled 2; we can also identify all vertices labeled 3. As in the proof of Lemma 3, it is 
straightforward to check that no vertex labeled 2 or 3 is the same as any other labeled 
vertex. So we only need to consider the vertices labeled 1 and 4. The only possible 
problem is if some pair of vertices labeled 1 and 4 that are drawn at distance four are 
actually the same vertex x. Further, this only causes difficulty if another pair labeled 1 
and 4 are adjacent. So, suppose this is the case. Since G has no separating 3-cycle, it is 
easy to check that these pairs labeled 1 and 4 must be disjoint. This implies that w1 is 
neither the same as, nor adjacent to, the top vertex labeled 2, since they are separated by 
a cycle through the pair labeled 1 and 4 that contains the top vertex labeled 1. If w1 and 
w3 are distinct, then we neglect the vertices labeled 1 and 4 altogether; instead we label 
w1 as 2 and w3 as 3. Due to the identified and adjacent pairs labeled 1 and 4, we can 
easily check that G′ is loopless, as in the proof of Lemma 3. So assume that w1 and w3 are 
the same vertex, denoted by bold in Fig. 5(F). Now we switch the vertex identifications 
we use to form G′. Delete v, u1, u2, and u3. Identify the two vertices labeled 4. Also 
identify the two neighbors of u1 labeled 2, the top vertex that was labeled 3 (now 2), 
and w1/3 (the bold vertex). Now it is straightforward to check that G′ is loopless, as in 
the proof of Lemma 3. As usual, we color this smaller graph by minimality; when we lift 
this coloring to G, vertex v and each vertex ui have enough available colors that we can 
extend the coloring by Fact 1. This finishes Figs. 5(E, F) and completes the proof of the 
lemma. �

Now we use discharging to prove that every planar graph has a 2-fold 9-coloring.

Main Theorem. Every planar graph G has a 2-fold 9-coloring. In particular, χf (G) ≤ 9
2 .

Proof. The second statement follows from the first, which we prove now. Let G be a 
minimal counterexample to the theorem. We will use the discharging method with initial 
charge d(v) − 6 for each vertex v. We write ch(v) to denote the initial charge and ch∗(v)
to denote the charge after redistributing. By Euler’s Formula, 

∑
v∈V (G) ch(v) = −12. By 

assuming that G satisfies the conditions stipulated in Lemmas 1–5, we redistribute the 
charge (without changing its sum) so that every vertex finishes with nonnegative charge. 
This yields the obvious contradiction −12 =

∑
v∈V (G) ch(v) =

∑
v∈V (G) ch∗(v) ≥ 0.
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Fig. 6. A 7-vertex v gives no charge to any crowded 5-neighbor.

We need a few definitions. For a vertex v, let Hv denote the subgraph induced by 
the 5-neighbors and 6-neighbors of v. If some w ∈ V (Hv) has dHv

(w) = 0, then w is an 
isolated neighbor of v; otherwise w is a non-isolated neighbor. A non-isolated 5-neighbor 
of a vertex v is crowded (with respect to v) if it has two 6-neighbors in Hv. We use 
crowded 5-neighbors in the discharging proof to help ensure that 7-vertices finish with 
sufficient charge, specifically to handle the configuration in Fig. 6. We redistribute charge 
via the following four rules; they are applied simultaneously, wherever applicable.

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-neighbor and charge 1

4 to each 
non-isolated 5-neighbor.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-neighbor, charge 0 to each crowded 

5-neighbor and charge 1
4 to each remaining 5-neighbor.

(R3) Each 7+-vertex gives charge 1
4 to each 6-neighbor.

(R4) Each 6-vertex gives charge 1
2 to each 5-neighbor.

To show that every vertex v finishes with nonnegative charge, we consider d(v).
d(v) ≥ 8: We will show that v gives away charge at most d(v)

4 . Since d(v) ≥ 8, we 

have ch(v) = d(v) − 6 ≥ d(v)
4 , so this will imply ch∗(v) ≥ 0. Rather than giving away 

charge by rules (R1) and (R3), instead let v give charge 14 to each neighbor. Now let each 
isolated 5-neighbor w take also the charge 1

4 that v gave to the neighbor that clockwise 
around v succeeds w. Now each neighbor of v has received at least as much charge as by 
rules (R1) and (R3) and v has given away charge d(v)

4 . Thus, when v gives away charge 

according to rules (R1) and (R3), this charge is at most d(v)
4 , so ch∗(v) ≥ 0.

d(v) = 7: First, suppose that v has an isolated 5-neighbor w. Let x, y ∈ N(v) be 
the two 7+-vertices that are common neighbors of v and w. We will show that the total 
charge that v gives to N(v) \ {w, x, y} is at most 1

2 . By Lemma 5, these four remaining 
vertices include at most two 6−-vertices. So, if v gives them a total of more than 1

2 , then 
one of them must be another isolated 5-neighbor. But now the final 6−-vertex must be 
distance at least 2 from each of the previous 5-neighbors, violating Lemma 5.

So instead assume that v has no isolated 5-neighbors. Thus, if v loses total charge 
more than 1, then it must have at least five 6−-neighbors that receive charge from it 
(since they each take charge 1). So assume that |Hv| ≥ 5. This implies that Hv consists
4
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of either (i) a 7-cycle or (ii) a single path or (iii) two paths. Recall from Lemma 4, that 
no 6-vertex has non-adjacent 6−-neighbors. This means that every vertex of degree 2 in 
Hv is a 5-vertex; in other words, every vertex on a cycle or in the interior of a path in 
Hv is a 5-vertex.

Now in each of cases (i)–(iii), Hv has an independent 3-set containing at least one 
5-vertex, which violates Lemma 5; the only exception is if Hv consists of a path on two 
vertices and a path on three vertices, and the only 5-vertex is the internal vertex on the 
longer path. However, in this case the 5-vertex is a crowded neighbor of v, as in Fig. 6, 
so it receives no charge from v. Thus, ch∗(v) ≥ 0.

d(v) = 6: By Lemma 4, we know that v has at most two 6−-neighbors (and if exactly 
two, then they are adjacent). Now (R3) implies that ch∗(v) ≥ 0 + 4(1

4 ) − 2(1
2 ) = 0.

d(v) = 5: If v has at least two 6-neighbors, then ch∗(v) ≥ −1 + 2(1
2 ) = 0; so assume 

that v has at most one 6-neighbor. Now if v has at least four 6+-neighbors, then ch∗(v) ≥
−1 +4(1

4 ) = 0 (since v has at most one 6-neighbor, v is not a crowded neighbor for any of 
its 7-neighbors); so v must have at least two 5-neighbors. By Lemma 3, these 5-neighbors 
must be adjacent and v has no 6-neighbors. But now one of v’s three 7+-neighbors sees 
v as an isolated 5-neighbor, so sends v charge 1

2 . Thus, ch∗(v) ≥ −1 + 1
2 +2(1

4 ) = 0. This 
completes the proof. �

A natural question is whether our theorem could be strengthened to show that every 
planar graph has a t-fold s-coloring, for some pair (s, t) with st < 9

2 . Such results are true 
for every pair (s, t) with st ≥ 4, since they follow from the 4 Color Theorem (because the 
Kneser graph Ks:t contains K4). But any proof of such a result must differ significantly 
from the proof of the Main Theorem. In particular, none of our reducibility proofs, with 
the exceptions of those for separating triangles and 4−-vertices, remain valid for any pair 
(s, t) with st < 9

2 . Recall that the proofs of Lemmas 3–5 all crucially relied on Fact 1. We 
show that to prove an analogue of this fact, even for K1,2 (rather than K1,3) requires 
s
t ≥ 9

2 .
Consider an analogue of Lemma 3, 4, or 5 for t-fold s-coloring. First we contract, color 

the smaller graph by minimality, and lift the coloring to G. Now the center vertex, v, has 
list size s −2t, and each leaf, ui, has list size s −3t. Let a = s −2t and b = s −3t. Consider 
the list assignment L(u1) = {1, . . . , b}, L(u2) = {a −b +1, . . . , a}, and L(v) = {1, . . . , a}. 
Every t-fold coloring from these lists uses at most b − (a − b) = 2b − a common colors 
on u1 and u2, so uses at least 2t − (2b − a) distinct colors on u1 and u2 (note that 
2b −a = 2(s −3t) − (s −2t) = s −4t ≥ 0, since we must be able to s-fold t-color K4). So, 
to color v, we must have a −(2t −(2b −a)) ≥ t, which means b ≥ 3

2 t. Thus, s −3t = b ≥ 3
2 t, 

so st ≥ 9
2 .
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