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Abstract. Every beginning real analysis student learns the classic Heine-Borel theorem,
that the interval [0, 1] is compact. The standard proof involves techniques such as con-
structing a sequence and appealing to the completeness of the reals (which some may find
unsatisfying). In this article, we present a different perspective by showing how the Heine-
Borel theorem can be derived from a few fundamental results in mathematical logic. In
particular, we put an ultrametric on the space of infinite binary sequences. Compactness
of this space can be established from Brouwer’s fan theorem. This result can be derived
from either König’s infinity lemma or from Gödel’s compactness theorem in model the-
ory. The Heine-Borel theorem is an immediate corollary. This illustrates an interesting
connection between the fundamental yet different notions of compactness in analysis and
compactness in logic.
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1. The Heine-Borel theorem

Think back to your first real analysis class. In the beginning, the definitions were fairly
straightforward. Open and closed sets made sense, because of the common usage of open
and closed intervals in previous math classes. It was a bit odd that open sets could also be
closed, or that sets could be neither open nor closed, or both. But this was “higher math,”
so you could let that one slide (and as a bonus, you added the fantastic word “clopen” to
your vocabulary!). Then, completely out of nowhere, came the definition of “compact:”
A set X is compact if every open cover of X has a finite subcover. Why would anyone
ever find themselves with an open cover, let alone try to extract a finite subcover? As
you sat there in class figuring out what this entailed, the professor wrote the following two
sentences on the board, with “Heine-Borel” preceding one of them.1

• The interval [0, 1] is compact.
• A subset of Rn is compact iff it is closed and bounded.

You might remember what came next. From an arbitrary infinite sequence contained in
[0, 1], a divide-and-conquer technique to construct a particular sequence of nested intervals,
from this a sequence of real numbers, and then a summon to the completeness of the reals to
guarantee that this sequence converges. Perhaps you found this enlightening and beautiful,
perhaps the details were lost on you, or perhaps, at this early stage in your career, the
appeal to the completeness of the reals felt a little unsatisfying. About this time, it might
have dawned on you that your roommate (who would become a computer science major
after taking said real analysis course) had a point: mathematicians make a living saying
the simplest things in the most difficult round-about way!

By now, you understand in ways you never could have imagined back then, how wise
your old roommate was. But you also remember what attracted you to mathematics in the
first place, those mysterious qualities that, like the silver bell in the Polar Express, could
only be heard by a select few. Your friends (old roommate included) shook their heads and
exchanged private smiles when you marveled at the sheer beauty of mathematics, such as
the surprising connections between seemingly unrelated topics, and the way that a basic
result could be proven in vastly different ways. In fact, it is likely these reasons why you
are reading this paper right now, and it is precisely these reasons that drove the authors to
write it. So jump onboard, and enjoy a quick but enlightening tour of diverse topics such as
ultrametrics and model theory, and we’ll drop you off back in your first real analysis course
at the classic Heine-Borel theorem. Along the way, we’ll discover an alternative proof of
the Heine-Borel theorem using simple techniques from first-order logic. We’ll also see how
the Gödel compactness theorem from logic implies the Heine-Borel theorem, providing a
bridge between these two classic compactess theorems.

1Textbooks vary as to which of these statements is called the Heine-Borel theorem and which one is a
lemma or corollary. We will refer to the compactness of [0, 1] as the Heine-Borel theorem. See McCleary [5].
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2. A Combinatorial Lemma

We begin by stating a combinatorial lemma due to Brouwer [1], and two proofs of it.
These proofs are quite different; one follows from König’s infinity lemma, and the other
from Gödel compactness. We will briefly explain these concepts for those unfamiliar with
them.

Brouwer’s fan theorem. Let B be a collection of finite bitstrings (binary sequences) so
that every infinite bitstring has an initial segment in B. Then there is a finite subset A ⊆ B
so that every infinite bitstring has an initial segment in A.

To motivate the fan theorem, consider a few easy cases. If B contains the bitstrings 0 and
1, then A = {0, 1} clearly works. If B contains 00, 01, 10, and 11, then A = {00, 01, 10, 11}
works. The fan theorem says that as long as every binary sequence contains some element
from B as an initial sequence, then we can always find a finite subset A with this property
as well. Our first proof of this theorem follows from König’s infinity lemma, which says that
a countably infinite tree where every vertex has finite degree contains an infinite path [3].
(We leave the simple proof of this lemma to the curious reader.)

(The Königian Proof). Assume (to reach a contradiction) that the fan theorem is false.
Recursively construct a rooted tree TF2 with the empty bitstring at the root so that the
children of b are the bitstrings b0 and b1. Now remove all bitstrings from TF2 that have an
initial segment in B to get the tree T .

For every n ≥ 1 there exists a length-n bitstring with no initial segment in B (if every
bitstring of length n had an initial segment in B, then the bitstrings from B of length at
most n would work for A). Thus, T is infinite.

Since every vertex of T has finite degree, we may apply König’s infinity lemma to get
an infinite path through T starting at the root. Hence we have a sequence y1, y2, y3, . . . ,
where yi is a length-i bitstring, yi is an initial segment of yi+1, and none of the yi’s have
initial segments in B. Let y be the infinite bitstring with length-i initial segment yi for
each i. If y had an initial segment of length n in B, then yn would have an initial segment
in B, which is forbidden by construction. Hence y has no initial segment in B, and this
contradiction completes the proof. �

3. Satisfiability of truth-functional propositional formulae.

We can get a more transparent proof of the lemma using some basic metalogical results
from propositional calculus. We will start with a few simple definitions.

Given a set of Boolean variables {x1, x2, x3, . . .}, define a formula as follows:

(i) Every xi ∈ {x1, x2, x3, . . .} is a formula.
(ii) Every finite conjunction (∧) of formulae is a formula.

(iii) Every negation (¬) of a formula is a formula.
(iv) Nothing else is a formula.

For example, the following string of symbols is a formula: ¬(x1 ∧ x2) ∧ x4 ∧ ¬x3. Recall
that “∧” means “and” and “¬” means “not.” A set of formulae Γ is satisfiable if there is
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some assignment of 1 (“true”) and 0 (“false”) to the variables that makes every formula
in Γ simultaneously true.

For example, the set

{x1 , ¬(x1 ∧ x2) , ¬(¬x2 ∧ ¬x3)}
is satisfied by the the assignment of x1 = 1, x2 = 0, and x3 = 1, which we write as
{(x1, 1), (x2, 0), (x3, 1)}. However, the set

{x1 , ¬(x1 ∧ x2) , ¬(¬x2 ∧ ¬x3) , ¬x3}
is not satisfiable, because the unique assignment that mutually satisfies the first three
formulae does not satisfy the fourth formula.

Now, suppose we have a (countably) infinite set of formulae. Clearly, if this set is
satisfiable, then every finite subset of formluae is also satisfiable. An easy consequence of
Gödel’s compactness theorem [2] from model theory [4] says that that the converse is also
true.

Compactness theorem for propositional calculus. A set Γ of propositional formulae
is satisfiable if and only if every finite subset of Γ is satisfiable.

We can use this result to give a straightforward proof of Brouwer’s fan theorem. The
basic idea is to construct for each bitstring b ∈ B, a formula N(b) from the variables
{x1, x2, x3, ...} that is not satisfied by the assignment {(x1, a1), (x2, a2), (x3, a3), . . . } if and
only if b is an initial segment of a1a2a3 · · · , and then apply the compactness theorem in a
clever manner.

(The Gödelian Proof). Consider a set {x1, x2, x3, . . .} of propositional variables. Let K be
the following set of formulae:

{N(b) | b ∈ B} ,

where for all b = b1b2 · · · bk ∈ B, N(b) = ¬ [φ1 ∧ φ2 ∧ · · · ∧ φk] and for all bi of each
b1b2 · · · bk,

φi =

{
xi, if bi = 1

¬xi, if bi = 0

By construction, N(b) is satisfied by the assignment {(x1, a1), (x2, a2), (x3, a3), . . . } if and
only if b is not an initial segment of a1a2a3 · · · . For example, if b = b1b2b3 = 100, then

N(b) = ¬[x1 ∧ ¬x2 ∧ ¬x3]

and this formula is satisfied by the assignment {(x1, a1), (x2, a2), (x3, a3), . . . } as long as
a1a2a3 6= 100.

Now, assume (to reach a contradiction) that the fan theorem is false. Then, for any
finite A ⊆ B, there exists a bitstring a1a2a3 · · · that has no initial segment in A. Hence,
every finite subset of formulae of K is satisfiable, and by compactness, K is satisfiable.
But by construction, this yields an infinite bitstring a1a2a3 · · · with no initial segment in
B. This contradiction completes the proof. �
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4. The Bit-Metric

Equipped with the fan theorem, we resume our tour in the land of bitstrings. Let
F2 = {0, 1}, and let FN

2 denote the set of infinite bitstrings. Again, we write a bitstring as
a = a1a2 · · · , and call the individual ai’s bits. Define the function ι that sends an element
of FN

2 to the corresponding number in [0, 1] written in binary, by

ι : FN
2 −→ [0, 1] , ι(a1a2a3 · · · ) =

∞∑
i=1

ai2
−i = 0.a1a2a3 . . . .

At this point, we must be careful not to overlook the fact that binary decimals have a few
subtle pesky properties, such as the fact that

ι(a1a2 · · · ak1000 · · · ) = ι(a1a2 · · · ak0111 · · · ) .
Fortunately, ι is injective on bitstrings not of this form. With this in mind, we say that
a binary decimal representation of x ∈ [0, 1) is in standard form if there are infinitely
many 0s, and we say that 0.1111 · · · is the standard form of 1. When we speak of a
number x ∈ [0, 1], we shall assume that it is written in standard binary form. With this
assumption, we can define ι−1(x) to be the preimage of x ∈ [0, 1) that has infinitely many
0s (and ι−1(1) = 11111 . . . ).

Next, we put a metric on FN
2 by saying that two distinct bitstrings a and b are a distance

β(a, b) = 2−k apart, where k is the last bit at which a and b agree. It is straightforward to
show that (FN

2 , β) is an ultrametric, and we call it the bit-metric on FN
2 . An ultrametric is

any metric that satisfies the strong triangle inequality:

β(a, c) ≤ max{β(a, b), β(b, c)} ,
and this gives it some extra special properties such as:

• Russian Nested Doll property of balls : If Br(a) ∩ Br(b) 6= ∅, then either Br(a) ⊆
Br(b) or Br(a) ⊇ Br(b).
• Center of the universe property : If |a − b| < r, then Br(a) = Br(b) (i.e., every

interior point of a radius-r ball can be taken to be the center).

These properties are very useful when studying (FN
2 , β), and we utilize them in papers

that are much more difficult to read than this one. However, we will not need them for
Heine-Borel, but we mention them for completeness (of the paper, not the reals).

At this point, you might be suspecting that the map ι, being so simple, is continuous.
This is indeed correct since, by definition, |ι(a)− ι(b)| ≤ β(a, b) for any a, b ∈ FN

2 .

Lemma 1. The map ι is continuous under the bit-metric.

However, what may come as a surprise is that under the bit-metric, FN
2 , a collection of

infinite sequences, is compact.

Lemma 2. (FN
2 , β) is compact.

Proof. Consider an open cover ∪i∈IBεi(ai) = FN
2 of balls, where each ai ∈ FN

2 . The ball
Bεi(ai) contains precisely the bitstrings that agree with the binary decimal form of ai on
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at least the first ki :=
⌊
log2(ε

−1
i )
⌋

bits. Let Si be this initial segment of ai, which is a

length-ki binary sequence. Now, a bitstring b ∈ FN
2 is in Bεi(ai) if and only if Si is an initial

segment of b. Consider the set B = {Si | i ∈ I} of finite bitstrings. Since every infinite
bitstring lies in some ball Bεi(ai), every infinite bitstring in Fn2 has an initial segment Si
from B. Brouwer’s fan theorem gives us a finite set of initial segments A ⊆ B for Fn2 . This
means that every bitstring in Fn2 lies in the union⋃

ai∈A

Bεi(ai) = FN
2 ,

and thus we have found a finite subcover of FN
2 . �

Equipped with Lemmas 1 and 2, we can now present The Shortest Proof of Heine-Borel
Ever.

Theorem 3 (Heine-Borel). The interval [0, 1] is compact.

Proof. ι(FN
2 ) = [0, 1] is the continuous image of a compact set. �

This concludes our tour, now that we have arrived back at your first real analysis class,
on that special day when you first saw the Heine-Borel theorem proven. Though we aren’t
suggesting that this proof should replace the standard divide-and-conquer technique, we
hope that you find the strategy presented here intriguing. For those of you out there that
have yet to take real analysis, but are advanced and motivated enough to be reading this
article, pay attention. When you find yourself in an analysis class, and the professor draws
that little box at the end of the proof of Heine-Borel, raise your hand, and inquire:

“Doesn’t that just follow from König’s infinity lemma, and the standard
ultrametric on the space of binary sequences?”

Then turn around and smile at your roommate.
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