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We prove that Kχ(G) is the only vertex critical graph G with

χ(G) � �(G) � 6 and ω(H(G)) � � �(G)
2 � − 2. Here H(G) is

the subgraph of G induced on the vertices of degree at least
χ(G). Setting ω(H(G)) = 1 proves a conjecture of Kierstead and
Kostochka.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a graph. We write χ(G), ω(G) and �(G) for the chromatic number, clique number and
maximum degree of G respectively. A vertex v in G is called critical if χ(G − v) < χ(G) and G is
called vertex critical if all of its vertices are critical. Let H(G) be the subgraph of G induced on the
vertices of degree at least χ(G). Recently, Kierstead and Kostochka [1] proved the following theorem
and conjectured that the 7 could be improved to 6.

Theorem 1 (Kierstead and Kostochka). Kχ(G) is the only vertex critical graph G with χ(G) � �(G) � 7 such
that H(G) is edgeless.

We prove this conjecture by establishing the following generalization.

Theorem 2. Kχ(G) is the only vertex critical graph G with χ(G) � �(G) � 6 and ω(H(G)) � ��(G)
2 � − 2.

Setting ω(H(G)) = 1 proves the conjecture.

Corollary 1. Kχ(G) is the only vertex critical graph G with χ(G) � �(G) � 6 such that H(G) is edgeless.

We can restate this in terms of Ore-degree as in [1] to get a generalization of Brooks’ theorem.
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Fig. 1. A counterexample to Corollary 2 with χ = 5.

Definition 1. The Ore-degree of an edge xy in a graph G is θ(xy) = d(x) + d(y). The Ore-degree of a
graph G is θ(G) = maxxy∈E(G) θ(xy).

Corollary 2. If 6 � χ(G) = � θ(G)
2 � + 1, then G contains the complete graph Kχ(G) .

This is best possible as shown by an example from [1] (see Fig. 1).

2. The proof

We will use part of an algorithm of Mozhan [2]. The following is a generalization of his main
lemma.

Definition 2. Let G be a graph containing at least one critical vertex. Let a � 1 and r1, . . . , ra be such
that 1 + ∑

i ri = χ(G). By a (r1, . . . , ra)-partitioned coloring of G we mean a proper coloring of G of
the form:{{x}, L11, L12, . . . , L1r1 , L21, L22, . . . , L2r2 , . . . , La1, La2, . . . , Lara

}
.

Here {x} is a singleton color class and each Li j is a color class.

Lemma 3. Let G be a graph containing at least one critical vertex. Let a � 1 and r1, . . . , ra be such that
1 + ∑

i ri = χ(G). Of all (r1, . . . , ra)-partitioned colorings of G pick one (call it π ) minimizing

a∑
i=1

∣∣∣∣∣E

(
G

[ ri⋃
j=1

Li j

])∣∣∣∣∣.
Remember that {x} is a singleton color class in the coloring. Put Ui = ⋃ri

j=1 Li j and let Zi(x) be the component
of x in G[{x} ∪ Ui]. If dZi(x)(x) = ri , then Zi(x) is complete if ri � 3 and Zi(x) is an odd cycle if ri = 2.

Proof. Let 1 � i � a such that dZi(x)(x) = ri . Put Zi = Zi(x).
First assume that �(Zi) > ri . Take y ∈ V (Zi) with dZi (y) > ri closest to x and let x1x2 · · · xt be a

shortest x− y path in Zi . Plainly, for k < t , each xk is adjacent to exactly one vertex in each color class
besides its own. Thus we may recolor xk with π(xk+1) for k < t and xt with π(x1) to produce a new
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χ(G)-coloring of G (this can be seen as a generalized Kempe chain). But we’ve moved a vertex (xt ) of
degree ri + 1 out of Ui while moving in a vertex (x1) of degree ri violating the minimality condition
on π . This is a contradiction.

Thus �(Zi) � ri . But χ(Zi) = ri + 1, so Brooks’ theorem implies that Zi is complete if ri � 3 and
Zi is an odd cycle if ri = 2. �

Now to prove Theorem 2, we assume it is false and derive a contradiction from properties of
a minimal counterexample. Let G �= Kχ(G) be a vertex critical graph with χ(G) � �(G) � 6 and

ω(H(G)) � ��(G)
2 � − 2 having the minimum number of vertices.

Definition 3. We call v ∈ V (G) low if d(v) = χ(G) − 1 and high otherwise.

Lemma 4. If �(G) = 6, then G contains no K6 − e.

Proof. Assume �(G) = 6 and that G contains a K6 − e, call it H . Let x1, x2 ∈ V (H) with dH (xi) = 4.
Color G − H with 5 colors and let J be the resulting list assignment on H . Then | J (x1)| + | J (x2)| �
dH (x1) + dH (x2) − 2 � 2 ∗ 6 − 6 � 6. Hence we have c ∈ J (x1) ∩ J (x2). Color both x1 and x2 with c
to get a list assignment J ′ on F = H − {x1, x2}. Since �(G) = 6, H(G) is edgeless. Thus at most one
vertex y ∈ V (F ) is high. Hence | J ′(y)| � 3 and | J ′(z)| � 4 for all z ∈ V (F )−{y}. Since F has 4 vertices
we can complete the 5-coloring using Hall’s theorem. This contradiction completes the proof. �
Lemma 5. Assume �(G) = 6. Let C be a K5 in G with at most one high vertex. Then each vertex in G − C is
adjacent to at most one low vertex in C .

Proof. Assume otherwise that some x ∈ V (G − C) is adjacent to all of S ⊆ C where each vertex in S
is low and |S| � 2. Put F = G − C . Then F is 5-colorable. Since each vertex in C is adjacent to at least
one vertex in F and G contains no K6 − e, we have y ∈ V (F ) with y �= x such that N(y) ∩ C contains
low vertices. Consider the graph T = F + xy. Note that dT (x) � 5 and dT (y) � 6. By minimality of G ,
T is either 5-colorable or contains a K�(G) . In the former case we get a 5-coloring of F where x and
y receive different colors, but this is easily completable to a coloring of G . Thus T contains K6 and
hence G contains a K6 − e giving a contradiction. �

Note that in Lemma 3, if dZi(x)(x) = ri then we can swap x with any other y ∈ Zi(x) by changing
π so that x is colored with π(y) and y is colored with π(x) to get another minimal χ(G)-coloring
of G .

Proof of Theorem 2. First, if χ(G) > �(G) the theorem follows from Brooks’ theorem.
Hence we may assume that χ(G) = �(G). Put � = �(G), r1 = ��−1

2 � and r2 = ��−1
2 �. Of all

(r1, r2)-partitioned colorings of G , pick one minimizing

2∑
i=1

∣∣∣∣∣E

(
G

[ ri⋃
j=1

Li j

])∣∣∣∣∣.
Remember that {x} is a singleton color class in the coloring. Throughout the proof we refer to

a coloring that minimizes the above function as a minimal coloring. Put Ui = ⋃ri
j=1 Li j and let Ci =

π(Ui) (the colors used on Ui ). For a minimal coloring γ of G , let Zγ ,i(x) be the component of x in
G[{x} ∪ γ −1(Ci)]. Put Zi(x) = Zπ,i(x).

Note that r1 � 2 and r2 � 3 and if r1 = 2 then r2 = 3, � = 6 and ω(H(G)) � 1.
First assume x is high. Then d(x) = r1 + r2 + 1 and hence dZi(x)(x) = ri for some i ∈ {1,2}. Hence,

by Lemma 3, either Zi(x) is complete or is an odd cycle with at least 5 vertices. In the first case, Zi(x)
contains at least ri − ��(G

2 � + 2 � i � 1. In the second case, ri = r1 = 2, so H(G) is independent. Thus
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Zi(x) contains at least 3 low vertices. Hence we can swap x with a low vertex in Ui to get another
minimal χ(G) coloring.

Thus we may assume that x is low. For i � 0, let pi = 1 if i is odd and pi = 2 if i is even. Consider
the following algorithm.

1. Put q0(y) = 0 for each y ∈ V (G).
2. Put x0 = x, π0 = π and i = 0.
3. Pick a low vertex xi+1 ∈ Zπi ,pi (xi) − xi first minimizing qi(xi+1) and then minimizing d(xi, xi+1).

Swap xi+1 with xi . Let πi+1 be the resulting coloring.
4. Put qi(xi) = qi(xi+1) + 1.
5. Put qi+1 = qi .
6. Put i = i + 1.
7. Goto (3).

Since V (G) is finite, we have a smallest k such that we are at step 3, pk = 2, and qk(z) = 1 for
some low vertex z ∈ Zπk,2(xk) − xk .

Claim. qk(y) � 1 for all y ∈ V (G).

Assume to the contrary that we have y ∈ V (G) with qk(y) > 1, then there is a first j < k for which
q j(y) > 1. From the first minimality condition in step 3 we see that we must have q j(t) = 1 for each
low vertex t ∈ Zπ j ,p j (x j) − x j . In addition, p j = 1 by the minimality of k.

For each low t ∈ Zπ j ,p j (x j) − x j , let m(t) be the least a such that t = xa . We will show that there
exists low t ∈ Zπ j ,p j (x j) − x j such that xm(t) is adjacent to xm(t)+1. Plainly, this is the case if r1 � 3
since then Zπ j ,p j (x j) is complete for all j and xm(t) is always adjacent to xm(t)+1. Thus we may assume
that r1 = 2, r2 = 3, � = 6 and H(G) is independent. Let t1, t2, . . . , tb be the low vertices of Zπ j ,p j (x j)

ordered by m(tl). Since Zπm(t1),1(t1) is an odd cycle and H(G) is independent, Zπm(t1),1(t1) contains
a pair of adjacent low vertices, say u and v . If N(t1) ∩ Zπm(t1),1(t1) contains a low vertex, then t1 is
our desired t by the second minimality condition in step 3. Thus t1 /∈ {u, v}. Take l minimal such that
u = xm(tl)+1 or v = xm(tl)+1. Without loss of generality, say u = xm(tl)+1. Then tl+1 must be adjacent to
v and thus tl+1 is our desired t by the second minimality condition in step 3.

Now, put a = m(t), Ha = N(xa) ∩ π−1
a (C2) and H j = N(xa) ∩ π−1

j (C2). Since xa−1 ∈ Ha and
qa−1(xa−1) = 1, by the minimality of k, N(xm)∩ Ha = ∅ for a � m < k. Thus Ha ⊆ H j . Since xa+1 is ad-
jacent to xa we have xa+1 ∈ H j − Ha and thus |H j | � |Ha|+1 = r2 +1. But then d(xa) � r1 +r2 +1 � �

contradicting the fact that xa is low. This proves the claim.
Now, remember our low vertex z ∈ Zπk,2(xk) − xk with qk(z) = 1. Let w ∈ Zπk,2(xk) − {xk, z} be a

low vertex and let e be minimal such that xe = z. Consider the change of πk given by swapping xk
with z to get a minimal coloring π ′ . Also consider the change of πk given by swapping xk with w to
get a minimal coloring π ′′ . Since qk(xe+1) � 1, it must be that xe+1 ∈ Zπ ′,1(z) ∩ Zπ ′′,1(w) and hence
Zπ ′,1(z) − z = Zπ ′′,1(w) − w . Let T = V (Zπ ′,1(z)) − z, D = V (Zπk,2(xk)), and F = G[T ∪ D].

Since G is vertex critical, we may (� − 1)-color G − F . Doing so leaves a list assignment J on
F where | J (v)| = dF (v) if v ∈ V (F ) is low and | J (v)| = dF (v) − 1 if v ∈ V (F ) is high. Assume xk
is not adjacent to xe+1. Since both are low vertices we have | J (xk)| + | J (xe+1)| � dF (xk) + dF (xe+1).
Clearly, dF (xk) � r2. Also, since xe+1 is adjacent to all of D we have dF (xe+1) � r2 + r1 − 1 if r1 � 3
and dF (xe+1) � r2 if r1 = 2. Note that in both cases, dF (xk) + dF (xe+1) � r1 + r2 + 1. Since the lists
together contain at most � − 1 = r1 + r2 colors, we have c ∈ J (xk) ∩ J (xe+1). If we color both xk and
xe+1 with c it is easy to complete the coloring to the rest of F by first coloring F − {z, w, xk, xe+1}
and then coloring z and w . This is a contradiction, hence xk is adjacent to xe+1.

First assume � = 6. Then |T | = 2, say T = {z′, xe+1}. Now D ∪ {xe+1} induces a K5 with at most
one high vertex and z′ is adjacent to the low vertices w, z ∈ D . Thus Lemma 5 gives a contradic-
tion.

Hence we may assume that � � 7. Put C = {z, w}, A = T −{xe+1} and B = D −{z, w} ∪ {xe+1} and
F ′ = F − {z, w}. Then A and B are cliques that cover F ′ and xe+1 is joined to A. As above we may
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(� − 1)-color G − F . Doing so leaves a list assignment J on F where | J (v)| = dF (v) if v ∈ V (F ) is
low and | J (v)| = dF (v) − 1 if v ∈ V (F ) is high. If we can find non-adjacent y1, y2 ∈ V (F ′) such that
J (y1)∩ J (y2) �= ∅, then after coloring y1 and y2 the same we can easily complete the coloring to the
rest F ′ and then to F . Since G contains no K� we have non-adjacent vertices y1 ∈ A and y2 ∈ B . Let
l(y1, y2) = |{i | yi is low}| and n(y1) = |N(y1) ∩ V (B)|. Since xe+1 is joined to A, n(y1) � 1. We have∣∣L(y1)

∣∣ + ∣∣L(y2)
∣∣ � dF (y1) + dF (y2) − 2 + l(y1, y2)

� dF ′(y1) + dF ′(y2) + 2 + l(y1, y2)

� |A| − 1 + n(y1) + |B| − 1 + 2 + l(y1, y2)

= |A| + |B| + n(y1) + l(y1, y2)

= � − 2 + n(y1) + l(y1, y2).

Since there are at most �−1 colors in both lists, if n(y1)+ l(y1, y2) � 2 we have L(y1)∩ L(y2) �= ∅
giving a contradiction. Whence n(y1) + l(y1, y2) � 1, giving l(y1, y2) = 0 and n(y1) = 1. But xk ∈ B
is low, so using y2 = xk shows that xk is joined to A. But then n(y1) � 2 for any y1 ∈ A. This final
contradiction completes the proof. �
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