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1. Introduction

Let G be a graph. We write x(G), w(G) and A(G) for the chromatic number, clique number and
maximum degree of G respectively. A vertex v in G is called critical if x (G — v) < x(G) and G is
called vertex critical if all of its vertices are critical. Let H(G) be the subgraph of G induced on the
vertices of degree at least x (G). Recently, Kierstead and Kostochka [1] proved the following theorem
and conjectured that the 7 could be improved to 6.

Theorem 1 (Kierstead and Kostochka). K y ) is the only vertex critical graph G with x (G) > A(G) > 7 such
that H(G) is edgeless.

We prove this conjecture by establishing the following generalization.

Theorem 2. K, () is the only vertex critical graph G with x (G) > A(G) > 6 and w(H(G)) < L%G)J —2.
Setting w(H(G)) =1 proves the conjecture.

Corollary 1. Ky (c) is the only vertex critical graph G with x (G) > A(G) > 6 such that H(G) is edgeless.
We can restate this in terms of Ore-degree as in [1] to get a generalization of Brooks’ theorem.
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Fig. 1. A counterexample to Corollary 2 with x =5.

Definition 1. The Ore-degree of an edge xy in a graph G is 6(xy) =d(x) + d(y). The Ore-degree of a
graph G is 0(G) = maxyyecg(c) 0 (Xy).

Corollary 2. If6 < x (G) = L@J + 1, then G contains the complete graph K y (c).
This is best possible as shown by an example from [1] (see Fig. 1).

2. The proof

We will use part of an algorithm of Mozhan [2]. The following is a generalization of his main
lemma.

Definition 2. Let G be a graph containing at least one critical vertex. Let a > 1 and rq, ..., rq be such
that 1+ ) ;1 = x(G). By a (r1, ..., 1q)-partitioned coloring of G we mean a proper coloring of G of
the form:

{{x}. L11, Li2. ... Liry, o1 Loz, oo Loy ooy Lats Lazs - Larg -

Here {x} is a singleton color class and each L;; is a color class.

Lemma 3. Let G be a graph containing at least one critical vertex. Let a > 1 and rq,...,rq be such that
14> ;ri= x(G).Of all (r1, ..., rq)-partitioned colorings of G pick one (call it 7 ) minimizing

)

Remember that {x} is a singleton color class in the coloring. Put U; = U;f:l Lij and let Z;(x) be the component
of xin G[{x} U U;]. If dz;x) (x) =i, then Z;(x) is complete if r; > 3 and Z;(x) is an odd cycle if r; = 2.

a

2

i=1

Proof. Let 1 <i < a such that dz; (x) =r;. Put Z; = Z;(x).

First assume that A(Z;) > r;. Take y € V(Z;) with dz (y) > r; closest to x and let x1x;---X; be a
shortest x — y path in Z;. Plainly, for k < t, each x; is adjacent to exactly one vertex in each color class
besides its own. Thus we may recolor x; with 7 (x,11) for k <t and x; with 7 (x1) to produce a new
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X (G)-coloring of G (this can be seen as a generalized Kempe chain). But we've moved a vertex (x;) of
degree r; + 1 out of U; while moving in a vertex (xq) of degree r; violating the minimality condition
on . This is a contradiction.

Thus A(Z;) <. But x(Z;) =r; + 1, so Brooks’ theorem implies that Z; is complete if r; > 3 and
Zi is an odd cycle if r; =2. O

Now to prove Theorem 2, we assume it is false and derive a contradiction from properties of
a minimal counterexample. Let G # K, ) be a vertex critical graph with x(G) > A(G) > 6 and

w(H(G)) < L@J — 2 having the minimum number of vertices.
Definition 3. We call v € V(G) low if d(v) = x(G) — 1 and high otherwise.
Lemma 4. If A(G) =6, then G contains no Kg — e.

Proof. Assume A(G) =6 and that G contains a K¢ — e, call it H. Let x1,x; € V(H) with dy(xj) =4.
Color G — H with 5 colors and let | be the resulting list assignment on H. Then |J(x1)| + | J(x2)| >
dy(x1) +dy(x2) —2>2%6 — 6> 6. Hence we have c € J(x1) N J(x2). Color both x; and x, with ¢
to get a list assignment J on F = H — {x1, x2}. Since A(G) =6, H(G) is edgeless. Thus at most one
vertex y € V(F) is high. Hence | J'(y)| > 3 and |J/(z)| > 4 for all z€ V(F)—{y}. Since F has 4 vertices
we can complete the 5-coloring using Hall's theorem. This contradiction completes the proof. O

Lemma 5. Assume A(G) = 6. Let C be a K5 in G with at most one high vertex. Then each vertexin G — C is
adjacent to at most one low vertex in C.

Proof. Assume otherwise that some x € V(G — C) is adjacent to all of S C C where each vertex in S
is low and |S| > 2. Put F =G — C. Then F is 5-colorable. Since each vertex in C is adjacent to at least
one vertex in F and G contains no Kg — e, we have y € V(F) with y 5 x such that N(y) N C contains
low vertices. Consider the graph T = F + xy. Note that dr(x) <5 and dr(y) < 6. By minimality of G,
T is either 5-colorable or contains a Ka(g). In the former case we get a 5-coloring of F where x and
y receive different colors, but this is easily completable to a coloring of G. Thus T contains Kg and
hence G contains a Kg — e giving a contradiction. O

Note that in Lemma 3, if dz;x) (x) =r; then we can swap x with any other y € Z;(x) by changing
7 so that x is colored with 7 (y) and y is colored with 77 (x) to get another minimal ¥ (G)-coloring
of G.

Proof of Theorem 2. First, if x (G) > A(G) the theorem follows from Brooks’ theorem.
Hence we may assume that x(G) = A(G). Put A = A(G), 11 = L%J and r, = f%]. of all
(r1, r2)-partitioned colorings of G, pick one minimizing

(9 ))

Remember that {x} is a singleton color class in the coloring. Throughout the proof we refer to
a coloring that minimizes the above function as a minimal coloring. Put U; = U;.":] Lij and let C; =
7 (U;) (the colors used on Uj). For a minimal coloring y of G, let Z, ;(x) be the component of x in
G{x} Uy ~1(Cp]. Put Zi(x) = Zz i (%).

Note that r; >2 and r; >3 and if r{ =2 then r; =3, A =6 and w(H(G)) < 1.

First assume x is high. Then d(x) =r; 4+ 12 + 1 and hence dz,x) (x) =r; for some i € {1, 2}. Hence,
by Lemma 3, either Z;(x) is complete or is an odd cycle with at least 5 vertices. In the first case, Z;(x)
contains at least r; — L%J 42 >i>1.In the second case, r; =r; =2, so H(G) is independent. Thus

2

2

i=1
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Zi(x) contains at least 3 low vertices. Hence we can swap x with a low vertex in U; to get another
minimal x (G) coloring.

Thus we may assume that x is low. For i > 0, let p; =1 if i is odd and p; =2 if i is even. Consider
the following algorithm.

1. Put qo(y) =0 for each y € V(G).

2. Put xo=x, mp=m and i =0.

3. Pick a low vertex Xj+1 € Zx, p;(x;) — x; first minimizing q;(x;+1) and then minimizing d(x;, Xj+1).
Swap x;41 with x;. Let ;41 be the resulting coloring.

. Put qi (%) = qi(Xi+1) + 1.

. Put gi+1 =q;.

LPuti=i+1.

. Goto (3).

N O U

Since V(G) is finite, we have a smallest k such that we are at step 3, py =2, and q(z) =1 for
some low vertex z € Zy, (X)) — Xk.

Claim. qi(y) <1 forally € V(G).

Assume to the contrary that we have y € V(G) with qi(y) > 1, then there is a first j <k for which
q;j(y) > 1. From the first minimality condition in step 3 we see that we must have q;(t) =1 for each
low vertex t € Z; p;(x;) — x;. In addition, pj =1 by the minimality of k.

For each low t € Z;,p;(Xj) — X, let m(t) be the least a such that t = x;. We will show that there
exists low t € Zg;p;i(Xj) — Xj such that xp ) is adjacent to Xm()+1. Plainly, this is the case if r{ >3
since then Zy, p;(x;) is complete for all j and Xy is always adjacent to Xm()+1. Thus we may assume
that r1 =2, r, =3, A =6 and H(G) is independent. Let t1,t3,...,t, be the low vertices of Zx;p; (X))
ordered by m(t;). Since Z”m(q),](tl) is an odd cycle and H(G) is independent, Zﬂmm),l(tl) contains
a pair of adjacent low vertices, say u and v. If N(t;) N Zﬂm([]),l(ﬁ) contains a low vertex, then t; is
our desired t by the second minimality condition in step 3. Thus t; ¢ {u, v}. Take | minimal such that
U = Xm(t)+1 OF V = Xm(t)+1. Without loss of generality, say u = Xm,)+1. Then tj,1 must be adjacent to
v and thus ;41 is our desired t by the second minimality condition in step 3.

Now, put a = m(t), Hg = N(x;) N n;l(Cz) and Hj; = N(xq) N nj_l(Cz). Since xq—1 € Hy; and
Ga—1(Xq—1) =1, by the minimality of k, N(x) N Hq = for a <m < k. Thus Hy C Hj. Since Xg41 is ad-
jacent to X, we have x,11 € Hj—Hg and thus |Hj| > [Hg|4+1=r+1. But then d(xq) 2 r1+r2+12 A
contradicting the fact that x, is low. This proves the claim.

Now, remember our low vertex z € Zy, »(x¢) — X, with qi(2) =1. Let w € Zz, 2(X) — {xk, 2z} be a
low vertex and let e be minimal such that x, = z. Consider the change of m; given by swapping x
with z to get a minimal coloring 7v’. Also consider the change of m, given by swapping x; with w to
get a minimal coloring 7”. Since qy(Xe+1) < 1, it must be that Xe4q1 € Z;/ 1(2) N Z7» 1 (W) and hence
Zp1(@)—z2=Zzni(w)—w.Let T =V (Zy 1(2)) —2, D=V (Zy, 2(X)), and F = G[T U D].

Since G is vertex critical, we may (A — 1)-color G — F. Doing so leaves a list assignment | on
F where |J(v)| =dp(v) if ve V(F) is low and |J(v)| =dp(v) — 1 if v € V(F) is high. Assume Xx;
is not adjacent to x.41. Since both are low vertices we have |]J(Xi)| + | J (Xe+1)| = dr(X) + dr (Xe+1).-
Clearly, dr(xx) > 3. Also, since X.41 is adjacent to all of D we have dp(Xe41) =212 +1r1 —1ifr{ >3
and df(Xe+1) =17 if r{ = 2. Note that in both cases, dr(xx) + dr(Xe+1) =11 + 12 + 1. Since the lists
together contain at most A — 1 =ry 4+, colors, we have c € J(x¢) N J(Xe+1). If we color both x; and
Xe+1 with c it is easy to complete the coloring to the rest of F by first coloring F — {z, w, Xk, Xe+1}
and then coloring z and w. This is a contradiction, hence x; is adjacent to Xey1.

First assume A =6. Then |T|=2, say T = {Z/,Xe+1}. Now D U {x,11} induces a K5 with at most
one high vertex and 7z’ is adjacent to the low vertices w,z € D. Thus Lemma 5 gives a contradic-
tion.

Hence we may assume that A > 7. Put C ={z, w}, A=T — {Xe41} and B=D — {z, w} U {X,+1} and
F'=F — {z,w}. Then A and B are cliques that cover F’ and x.1 is joined to A. As above we may
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(A — 1)-color G — F. Doing so leaves a list assignment | on F where |J(v)| =dr(v) if ve V(F) is
low and |J(v)| =dp(v) — 1 if v € V(F) is high. If we can find non-adjacent y1, y2 € V(F’) such that
J(y1) N J(y2) # 9, then after coloring y; and y, the same we can easily complete the coloring to the
rest F/ and then to F. Since G contains no Kx we have non-adjacent vertices y; € A and y, € B. Let
l(y1,y2) =I{i | yi is low}| and n(y1) = [N(y1) N V(B)|. Since X1 is joined to A, n(y;) > 1. We have
ILyD| + [Ly2)| = dr(v1) +dr(y2) =2+ 11, ¥2)

> dp(y1) +dp(y2) +2+1(y1, y2)

2 |Al=1+n(y1) + Bl —1+2+1(y1,¥2)

=I|Al+|Bl+n(y1) +1(y1,y2)

=A=2+ny1) +1y1, y2).

Since there are at most A —1 colors in both lists, if n(y1) +1(y1, y2) > 2 we have L(y1) NL(y2) # ¢
giving a contradiction. Whence n(y1) + I(y1, y2) < 1, giving I(y1, y2) =0 and n(y1) = 1. But x, € B
is low, so using y, = x; shows that x; is joined to A. But then n(y1) > 2 for any y; € A. This final
contradiction completes the proof. O

Acknowledgments
Thanks to anonymous referees for helping to improve the readability of the paper.

References

[1] H.A. Kierstead, A.V. Kostochka, Ore-type versions of Brooks’ theorem, J. Combin. Theory Ser. B 99 (2009) 298-305.
[2] N.N. Mozhan, Chromatic number of graphs with a density that does not exceed two-thirds of the maximal degree, Metody
Diskr. Anal. 39 (1983) 52-65.



	Δ-Critical graphs with small high vertex cliques
	1 Introduction
	2 The proof
	Acknowledgments
	References


